
Scoping Planning Agents With Shared Models

Tania Bedrax-Weiss' Jeremy D. Frank
Ari I(. J6nssont Conor McGann*
NASA Ames Research Center, MS 269-2

Moffett Field, CA 94035-1000,
{tania,frank, jonsson,cmcgann}@email .arc .nasa.gov

Abstract

In this paper we provide a formal framework to define
the scope of planning agents based on a single declar-
ative model. Having multiple agents sharing a single
model provides numerous advantages that lead to re-
duced development costs and increase reliability of the
system. We formally define planning in terms of ex-
tensions of an initial partial plan, and a set of flaws
that make the plan unacceptable. A Flaw Filter (FF)
allows us to identify those flaws relevant to an agent.
Flaw filters motivate the Plan Identification Function
(PIF), which specifies when an agent is is ready hand
control to another agent for further work. PIFs define
a set of plan extensions that can be generated from a
model and a plan request. FFs and PIFs can be used to
define the scope of agents without changing the model.
We describe an implementation of PIFsand FFswithin
the context of EUROPA, a constraint-based planning
architecture, and show how it can be used to easily
design many different agents.

ToDo list
0 spellcheck

0 pagecount (8 pages)

0 clean up latter parts of theory section

0 related work needs to be reviewed since no longer

0 discussion and future xork

execution focus

Introduction
Multi-agent systems are usually composed of multiple
agents with diEsrmt capabilities that cooperate to solve
a problem. The problem decomposition, and therefore
the agent architecture, can be motivated by different
desires. A common example of such a system is a plan-
ner that collaborates with an executive system. This
architecture is common due to uncertainty in the ex-
ecution environment; the planner postpones decisions
until execution time to avoid making poor predictions

~

*QSS Group, Inc.
+Research Institute for Advanced Computer Science

that will have to be undone. Another example is a sci-
ence planner that determines the activities of a science
instrument, and a tactical planner that integrates the
science plan with a plan for other parts of a spacecraft,
such as the power system and the attitude control sys-
tem. This architecture may be motivated by a desire
to plan for critical science goals and let these drive the
rest of the planning.

When designing a multi-agent system, engineers typ-
ically create separate models, one for each agent. How-
ever, engineers are then faced with the burden of syn-
chronizing and maintaining consistency among several
models. Any change in the design may potentially im-
pact all of the models. Furthermore, many multi-agent
systems define a fixed boundary between the agents.
These fixed boundaries are difficult to modify because
they are often built into the system architecture; if the
boundary is not appropriate, modification is difficult.
These systems sometimes even use different modeling
languages for each agent, in some cases with different
semantics. This increases the cost of changing and vali-
dating models, and decreases the reliability of the over-
all system.

In this paper, we focus on specifylng the scope of
planning agents in multi-agent systems working on
the same planning problem using a single declarative
model. Having agents use the same model eliminates
data synchronization problems, increases reuse, local-
izes changes easing maintainability, and reduces devel-
opment cost and increases reliability. We provide a
crisp and flexible characterization of the scope of each
of the agents. This framework enables multi-agent sys-
tem designers to specify the boundaries among agents.
Furthermore, this framework makes it possible to use
different design tradeoffs within the confines of a single
system.

The paper is organized as follows. We first formalize
the planning task in terms of extensions of an initial
partial plan, and flaws that make a partial plan un-
acceptable to an agent. We then formally define Flaw
Filters (FFs), a mechanism identifying a subset of all
possibie flaws that define the necessary work required
by an agent to complete its' task. FFs induce Plan
Identification Functions (PIFs), a means for an agent

to determine when it has finished its planning task.
Within this general framework it is possible to specify
agent design further. We describe an irriplaiiientatioii
of PIFs and FFs used in EUROPA, a constraint-based
planning framework. EUROPA assumes that all agents
also share a plan database representing the current plan.
We show how EUROPA’s FF mechanism is used by
agents to drive planning. We use a running example
and describe some modeling issues that arise. Finally,
we conclude and describe some future work.

The Planning Problem
In this section we describe a planning problem in
a general way as required to define our framework.
Many declarative planning domain languages have been
created, and most of them share a set of common
traits; rather than describe a particular language and
paradiem, we loosely define common traits of all such
languages and identify the core components needed to
motivate the rest of our framework.

A planning problem consists of a model M and a par-
tial plan P. The model consists of two parts. The first
part is the set of states that describe the elementary
building blocks of any plan. We take a loose view of
state, and use the term to refer t o either actions or flu-
ents. The second part is a set of rules that describe re-
lationships that must hold in any legitimate plan. The
plan consists of a set of states and a set of relationships
declared to hold between the states. A plan Q is an
extension of P if P c &. This means every state of P
is a state of Q.

If we now take a plan P and a model MI we can
determine which rules in M apply to P: if rule r men-
tions a state in P, then it applies. Rules may apply
multiple times, and we can enumerate the instances of
rule applications. A rule instance can be provably satis-
fied, provably unsatisfied or not provably satisfied. The
set of rule instances that are not provably satisfied are
called flaws. We divide flaws into two sets: Fc(Q, M)
is the set of provably unsatisfied flaws of Q under M ,
and Fu(Q, M) is the set of not provably satisfied flaws.

We can now classify extensions of Q in a variety of
ways. If Q is an extension of P and has no flaws, then
it is a solution to P. The process of planning is then
to find a solution of P. If F,(Q,M) = 0 we refer to Q
as a sound extension of P. If Fc(Q, M) # 0 we refer to
Q as an inconsistent extension of P. If F,(Q, M) = 0
we refer to Q as an complete extension of P. Thus. a
solution Q is a sound and complete extension of P.

Planning can proceed in one of two ways. The ex-
tension Q can be transformed into an extension of Q
by adding states, or it can be transformed into S such
that S is an extension of P and Q is an extension of 5’
by removing states that are in P - Q. No state of P
may be removed during planning. This is an extremely
general notioii of planning. It does not proscribe the
form of the rules, nor does it proscribe how the rules
are used to drive planning. Various common planning

paradigms can be described using this framework, as
we show below.

STRIPS rnulivales two styles of planning: linear
and partial-order causal link (POCL) planning. Lin-
ear plans assume that all actions are totaiiy ordered.
STRIPS actions and fluents correspond to states in
our formalism. A STRIPS planning problem state-
ment consists of a STRIPS model with the initial and
goal states, and an empty plan. Flaws arise from the
STRIPS rules describing preconditions and effects of
actions; if an action’s preconditions are not the effects
of some previous action or the initial fluents, the pre-
conditions lead to flaws. A solution is found when all
fluents are supported.

A POCL approach to planning allows concurrent ac-
tions. Concurrency gives rise to the possibility of clob-
bering effects of other concurrent actions, thus giving
rise to causal link threats. In POCL states are aug-
mented with causal links, and flaws are augmented to
include threats.

Constructive search methods for planning are limited
to generathg sound extensions of P. Note that our
formalization does not specify the direction in which
p!accing is done or does it specie the specific search
method used. Thus, it covers progression and re-
gression planning as well as various non-chronological
backtracking and constructive sampling approaches like
LDS. Local search methods such as those used by AS-
PEN (FRCY97) are typically concerned with generat-
ing complete extensions of P, and must resolve flaws in

IxTeT (GL94; LG95) is a planner that can reason
about domains with time and resources. A plan is
mapped to a Constraint Satisfaction Problem (CSP)
and part of the planning is performed by searching
for solutions to the CSP. Variables in this CSP are
divided into temporal variables representing the start
or end of activities, and atemporal variables represent-
ing attributes of states or actions in the plan. In
IxTeT, a flaw is either an unfounded expression, an
inconsistent expression, or a conflicting resource allo-
cation. Unfounded expressions include new tasks re-
quired by existing tasks in the plan. Inconsistent ex-
pressions include violated constraints discovered by rea-
soning about the CSP. In our formalism, unfounded
expressions belong to the set F,(Q, M) ; inconsistent
expressions belong to the set Fc(Q,M); and conflict-
ing resource allocations belong to the set Fc(Q,M) or
F,(Q,M) depending on whether they can be proven
inconsistent or not.

Fc(Q, M) .

Plan Identification Functions
Suppose we are designing a set of agents to solve a plan-
ning problem P with a shared model M . All agents are
assumed to know MI and we also assume that only one
agect zt a t i z e will G ; d i oi; &, which is s ~ m e extecsisn
of P. There might be many criteria that force agents
to hand over control to another agent, but we will limit

.
6 ourselves to describing ways for agents to detect nec-

essary conditions for handing over control. If an agent
has no more work to do on a plan Q, then it must hand
over control.

We define a Flaw Fzlter (FF) as a mapping from flaws
to Y , N. If a flaw maps to Y then the agent must con-
tinue planning to resolve the flaw, otherwise the flaw
can safely be ignored by this agent. This motivates a
Plan Identification -?unction (PIF). A PIF is a function
that maps partial plans P to the values Y and N. A re-
turn value of Y indicates a plan has no more filtered
flaws, and therefore is ready to be passed on to another
agent . A return value of N indicates a plan still has
filtered flaws that the agent needs to resolve. A plan P
satisfies a PIF i if i (P) =Y. A PIF i(P) induced by a
FF f is denoted ip(P).

We distinguish the null FF as returning Y for all flaws.
This induces the null PIF io that returns Y only if the
set of flaws is empty. This is the strictest possible in-
terpretation of acceptability, and is used implicitly in
most approaches to planning.

Properties of PIFs
When dcsigzixg mvdti-agent systems we would like e%&
agent to perform only part of the work. Since the model
is shared among the agents, we would like to partition
the flaws among agents designed to solve specific parts
of the problem. Ultimately, the goal is to design a set
of agents whose PIFs satisfy i o .

Suppose we have a set of FFs used by a set of agents.
The union of two filters f 1 U f z is the set of flaws F for
which f l (f) = y or fZ (f)=y . We can now reason about
the joint behavior of agents using the following result:

Theorem 1 Let M be a model and let P be a partaal
plan. Suppose 3 i s a set of flaw filters. Suppose a
collection of agents always f inds an extension Q such
that for each f E 3 i f (P) =Y. Then the collection of
agents satisfies U f E 3 i f .

We can also order FFs and their PIFs . A flaw filter
f l c f z if every flaw filtered by fl is filtered by f 2 . This
means i f l (P) + i f i (P) . Since fewer plans are accepted
by i f l (P) than i f i (P) , this induces an ordering on PIFs
. Such an ordering might be used to dictate the order
in which agents work on a planning problem.

We can measure the degree of overlap of t x - 0 FFs
. The intersection of two filters f l n f 2 is the set of
flaws F for which f l (f) = y and f z (f) = y . This is work
t h t either agent can do; this can be a featture if one
agent runs out of time, or a problem if agents are sup-
posed to all do disparate work, or if an agent is respon-
sible for handling flaws it is not intended to handle.
The intersection can let us determine how many agents
can work on a plan, as well as help us design handoff
strategies. Suppose we have two agents using FFs f 1

and fz. A partial plan Q links the agents if i f l (Q) =y
and i f 2 (Q j =n. intuitiveiy, this means that one agent
is done with a planning problem and another agent is
ready to work on the problem. This means that there

exists a plan Q such that f l (Q) n f i (Q) = 0. Suppose
that VQ f l (Q) n f z (Q) = 0, In this case, only one of
the two agents will ever need to work on the plan; such
a pair of FFs is called complementary.

We now define some common characteristics that de-
signers of PIFs may wish to enforce. In what follows,
let i be the PIF . We assume we are defining the prop-
erties of i with respect to some planning problem P on
a model M .

Definition 1 A PIF, i, enforces consistency i;f, for any
extension Q, such that i (Q) = y , P has at least one
solution.

Suppose that i filters states that define Simple Tem-
poral Networks (DMP91) that are guaranteed to be free
of negative cycles. Such problems are known t o have at
least one solution, and such a PIF enforces consistency.

Another useful characterization is based how much
work needs to be done by an execution engine to find a
consistent completion in different circumstances. This
is a particularly interesting question if uncertainty dur-
ing execution is taken into account. The simplest case
to handle is where the execution agent can make arbi-
trary choices to complete the given partial plan:
Definition 2 A PIF, i , enforces solvability i;f, f o r any
partial plan Q, such that i (Q) = y , all extensions of Q
are complete and consistent. Alternatively, Q defines a
family of solutions of P.

Suppose that i filters states that define Boolean Con-
junctive Normal Form (CNF) problems for which all
clauses are known to be satisfied, even though some
clauses may have unassigned variables. This PIF en-
forces solvability.

A generalization of solvability relaxes the require-
ment that we find Q such that all extensions are so-
lutions; instead, we need only to fmd Q such that all
extensions satisfy the PIF .
Definition 3 A PIF, i, enforces i-solvability iL for
any partial plan Q, such that i(Q) = y , all extensions
R of Q have the property i (Q) = y .

Requiring solvability is often unnecessarily expensive
for the planner and needlessly restrictive for the execu-
tion agent. A more relaxed notion is that a partial plan
requires oniy a bounded amount of time to solve:
Definition 4 A PIF, i, enforces O(f (n)) solvability zf,
for any partial plan Q satisfying i (Q) = y , then in time
O(f (/&I)) either a solution of Q can be found or it can
be shown that no consistent completion of Q exists.

Suppose that i filters out Simple Temporal Networks.
A simple polynomial time procedure can detect nega-
tive cycles in such problems; if such a cycle exists, the
problem has no solution, and if no such cycles exist,
then the problem has a solution. This PIF enforces
polynomial time solvability.

As noted above, our formalization also covers agents
that are capable of generating inconsistent plans. For

The first characteristic we define is consistency.

such agents, the PIF may return y for inconsistent
plans. In that case, it is useful to characterize the
h i o u n t of time required to repair the plan, in order
to find a consistent completion of the original problem.

Definition 5 A PIF, i, enforces O(f(n)) transforma-
bility iif, for any partial plan Q satisfying i (Q) = y,
then in tame O(f(lQ1)) a solution to P can be found, or
at can be shown that no solution exists.

Suppose that i filters scheduling problems where the
objective is to find a set of activities that can be
scheduled in the face of temporal and resource con-
straints. Such problems are NP-complete, so i en-
forces exponential-time transformability. The plan Q
may contain activities that cannot be scheduled in the
face of the existing constraints.

The Remote Agent: A Case Study in Plan
Identification
The Remote Agent (JMM+OO; MNP'98) was the first
AI-based system to control a spacecraft in a two-day
experiment in May of 1999. The Remote Agent con-
sisted of three components: a Planner, an Executive,
and a Mode Ideiitification and Recoiifiguratioii systeiii.
The Planner and Executive made use of PIFs , and
(JMM+OG) marks the first appearance of the concept
in the literature. In this section we describe the PIFs
used by these components.

The domain description language of the Remote
Agent is similar to that of IxTeT, in that it represents
domains with time and resources, and plans are mapped
to CSPs. As with IxTeT, variables are divided into tem-
poral variables and atemporal variables. Flaws in the
Remote Agent Planner include uninstantiated atem-
poral variable flaws, open disjunctions (a special class
of uninstantiated atemporal variables) , floating states,
and unresolved rules. All of these flaws fall into our
class F,(Q,M). The class of temporal variable flaws
was filtered out, as were flaws that fell strictly out-
side a planning horizon. The Planner implicitly han-
dled Fc(Q, M) using a form of backtracking search.

The Remote Agent Planner used a PIF that returned
three values: Y, N , ?. The value Y corresponded to a
plan with F,(Q, M) = 8 and F,(Q, M) = 0, the value
N corresponded to a plan with Fc(Q,M) # 0, and ?
was returned otherwise. The plans satisfying the PIF
consisted of Simple Temporal Networks that were guar-
anteed to have a solution; thus, the PIF for the Planner
enforced sclvability. The Executive as solely responsi-
ble for handling uninstantiated temporal variable flaws
within a more limited planning horizon, and thus its
PIF was both linked and complementary to the PIF of
the Planner.

An Implementation of Plan
Identification

We now turn our attention to describing an example
system that implements a general architcture for using

PIFs. The system, called EUROPA (Extensible Univer-
sal Remote Operations Planning Architecture), is an in-
stantiation of the the CAIP Constraznt-based Attmbute
and Interval Planning framework (FJ03) (CAIP). In
this section, we first give an overview of EVEOPA, then
describe how PIFs are implemented as flaw filters. Fur-
ther details on CAIP implementation can be found in
(FJG3); in this section, we focus on those aspects that
are most relevant to PIFs.

+

CAIP Overview
Plans in CAIP consist of attnbutes that can take on
a sequence of values over time. Each attribute repre-
sents one of a number of concurrent threads describing
the state of the world. An attribute takes on only one
of a finite set of possible values at any time. Each of
these values is a temporal interval. In CAIP, intervals
represent actions and states with temporal extent. An
interval is simply a predicate holding over a period of
time. The start and end of the interval and the param-
eters of the predicate are described by variables. More
formally, an interval is a tuple, (p , X, s, e) , where p is a
predicate name, X is a vector of variables defining the
arguments to the predicate, and s and e are temporal
variables, defining the start and end of the interval. In
CAIP variables represent all aspects of states and ac-
tions and constraints to enforce relations between those
variables.

A plannzng domazn is defined by the set of interval
types, and a set of configuration rules. A configuratzon
rule is a generalization of the notion of preconditions
and effects. It consists of a head and a set of conse-
quences. The head of a configuration rule is a pattern
for an action or a state. Each of the consequences spec-
ifies a state or action, along with a set of constraints
among the variables of the head and the consequent.
A configuration rule is applicable if its head matches
some action or state in a plan. TO satisfy the rule, all
the consequences must also be in the plan, satisfying
the associated constraints. The configuration rules are
very expressive. Instead of specifying only state values
before and after an action, they can specify arbitrary
temporal relations between actions and states that must
hold in a valid plan. These rules can also express dis-
junctions over consequents.

We will illustrate the concepts using an example of
a simple spacecraft that can slew (i.e, turn to different
orientations), take pictures, and download pictures to
Earth. In order to take a picture of one of a specified
number of objects, the spacecraft must be pointing at
the target object. This will generally require slewing
from one pointing to another. To ensure that resid-
ual vibration from the slew does not interfere with the
picture, we require the slew to complete 10 seconds be-
fore taking the picture. The spacecraft's onboard data
buffer may not be able to hold all of the pictures re-
qiciested. In Order to ~ G W ~ I ~ O S ~ pictures t= Earth, the
spacecraft will have to slew to Earth at one of a fixed
set of times. An initial state for this problem consists

b of a set of objects, a set of picture requests, the times
at which downlinking images can occur, and some con-
straints among the picture requests.

object ={Earth, asteroid-1, star-2, . . .)
Atti tude: {pointAt (ob jec t) , turnTo(object) ,
i d l e ()}
Camera:{off 0, r e a d y o , takePic(object)}
Take-Picture(B1 4 met-by r e a d y 0
Take-Picture (B) --+ c ont ained-by [10,0]
pointAt (B)
r e a d y 0 met-by o f f (1
pointAt (B) + met-by turnTo (I?)
turnTo (B) -+ met-by i d l e ()

Figure 1: A simple model of the spacecraft domain. The
model consists of two attributes, Att i tude and Camera.
The attribute declarations are accompanied by a list of
interval values that the attributes can take on. The
rules specify temporal relationships between intervals
drawn from Allen’s Algebra, as well as describing (part
of) a finite state machine governing the legal sequences
each attribute can take on.

Figure 1 shows a fragment of a CAIP description of
the satellite domain. For example, we have a configu-
ration rule with a head specifying a takePicture(x)
interval, and a consequence specifying that if I is such
an interval, the plan must also contain a pointAt(y1
interval, J , such that x = y, the start of J is at least
10 seconds before the start of I , and the end of J is no
earlier than the end of I .

Let Q be a partial plan and let M be the model. W-e
divide the not provably satisfied rule flaws F,(Q,M)
into three different categories for convenience:
0 Unbound temporal variables F,(Q, M) . These con-

Unbound parameter variables Fp(Q,M). These are

0 Interval consequences that have not been iriserted

This partition is reminiscent of the scheme used to di-
vide variable flaws in both IxTeT and the Remote Agent
Planner.

Implementing Plan Identification in
EUROPA
EUROPA is ac implemefitation of CAIP that has been
developed for use in planning space missions, both for
single and multi-agent planning. PIFs provide consid-
erable flexibility in designing agents for EUROPA. En-
gineers can design different PIFs and analyze the result-
ing performance of the integrated multi-agent system,
and choose the PIF that works best for the application
in question.

EUROPA commits to multi-agent planning wiTh a
shared plan database. All agents cooperating on a plan-
ning problem modify the same data structure (but not

sist of either s or e from some interval.

all other interval variables.

into the plan, F,(Q, M) .

Figure 2: EUROPA system architecture diagram

Figure 3: C!,S Diagram of the P!xlId FrameYQrlr

necessarily at the same time). Figure 2 shows the over-
all architecture of EUROPA. The system is composed
of the following modules: a planner, a plan database,
and a plan identification module. The plan identifica-
tion module encapsulates both the filter criteria and
the plan identification function. Planning begins when
the plan dabase is initialized with a partial plan and a
domain model. During planning, a planner can query
the plan database through the plan identification mod-
ule for filtered flaws in the current partial plan. The
planner resolves filtered flaws by performing updates
on the plan database. The plan database uses a con-
straint network to manage the consistency of variables
and constaints and uses a temporal network to maintain
consistency between temporal variables and the tempo-
ral relationships imposed by the configuration rules. If
no flaws remain and the plan is consistent, the planner
concludes that a pian has been found.

Framework Class Diagram
Figure 3 presents the implementation details of the
PlanId module referenced in Figure 2. There are
three main components to the PIF implementation
in EUROPA: a Flawquery, F i l t e r C r i t e r i a , and a
Flawcache. A planner queries for filtered flaws through
the Flawquery. This component provides all access
to filtered flaws by establishing a Connection with
the Flawcache. All flaw changes since the last query
are pushed from the Flawcache to the Flawquery
who then applies the F i l t e r c r i t e r i a to select filtered
flaws. The F i l t e r c r i t e r i a object is just a collection
of Conditions that specify which flaws pass the crite-
ria. A filtered Flaw in satisfies all Conditions. Each
Flawquery has exactly one F i l t e r c r i t e r i a instance,
provided to it during construction. The Flawcache is
synchronized with every plan database update. Notifi-
cations of changes in the contents of the Flawcache, i.e.
flaws inserted or removed, are pushed to each connec-
tion from the Flawcache as the latter is synchronized
with the PlanDatabase.

This architecture provides a number of useful fea-
tures. First, the Flawcache can support many con-
nections at once, enabling it to provide flaws to many
planners. Second, a wide variety of simple conditions
are provided, enabling a very large number of different
PIFs to be expressible. Third, it is very straightforward
to develop additional conditions making the approach
very extendible. Finally, emphasis on lazy evaluation
and event-based synchronization leads to efficient im-
plement at ion.

We will describe the FF and PIF implementation of
EUROPA for the satellite scheduling mission. We will

Figure 4: A simple partial plan for the model described
in Figure 1

describe PIFs for three agents: a Science Planner, a De-
liberative Planner, and an Executive. The FF for the
Deliberative Planner, fp, filters all flaws in F,(Q, M) ,
that is, all temporal variable flaws. The FF for the Sci-
ence Planner, is, also filters all temporal variable flaws.
In addition, it filters elements of &(Q, M) such that the
predicate p of the interval is o f f , i d l e or ready. Let
d (v) l b be the lower bound on the domain of variable w.
The FF for the Executive, fe, filters all temporal vari-
able flaws such that v E F,(Q,M) and d(v) lb > c, a
value that indicates an upper bound on the Executive’s
planning horizon. It also filters all flaws in Ft(Q, M)

The difference between the PIFs resides in each of the
F i l t e rCr i t e r i a . Each agents’ criteria will use differ-
ent conditions. For instance, the Deliberative Planner
will use a variable condition allowing only flaws that are
not temporal variables to pass the condition. The Sci-
ence Planner will have an additional condition allowing
oiily fiaws that are neither variables of the prediczite
Takepicture or intervals representing this predicate,
to pass the condition. Finally, the Executive will have
a horizon condition allowing only flaws that are tem-
poral variables that fall within the horizon to pass the
condition.

and F,(Q,M).

while (done = = false)
if (isConsistent())
filteredFlaws=getFlawsFromQuery ()
if (filteredFlaws.isEmpty()==false)

nextFlaw = choose(filteredF1aws)
resolve(nextFlaw)

else done=true
else ... // rest of the algorithm omitted

end while

Figure 5: Planlzing with Flaw Queries. Each agent’s
planner will use its private Flaw Query to ensure that
it receives only those flaws that matter. The Flawcache
disseminates only the relevant flam to each planner.

we’ve omit ted the temporal variable flaws,
putting t h e m in will bloat this, what should we
do? To see how the flaw filtering works, we will demon-
strate how the Science Planner’s PIF filters flaws dur-
ing planning. Suppose planning begins with the sample
partial plan shown in Figure 4. There are five flaws:
the variables A, B and C, the turnTo (C) interval and
the pointAt (D = d) interval; the Flawcache has these
five Aaws. Recall that the PIF filters out intervals with
predicate off ,ready as well as all temporal variables.
Then the set of filtered flazs akei the first step comists
of the three variable flaws and the pointAt (D = d) in-
terval.

.
Step 1:

FlawCache={A, B, C,pointAt (D = d) , turnTo(C)}
FilteredFlaws:{A, B, C,pointAt (D = d) }
nextFlaw: pointAt (D = d)

FlawCache={A, B, C, E,turnTo (C) , turnTo (E) }
FilteredFlaws:{A, B, C, E,turnTo (E = d) , turnTo (C) }
nextFlaw: turnTo (E = d)

FlawCache={A, B , C, E,}turnTo(C) , i d l e () }
FilteredFlaws:{A, B , C, E,,turnTo (C) }
nextFlaw: A

Step 2:

Step 3:

Figure 6: Evolution of the flaws for. the Science Plan-
nkr during planning, beginning with the partial plan in
Figure 4.

The basic loop of a planner is similar to the fragment
presented in Figure 5. At each step, the planner re-
quests the filtered flaws. Once the flaws are retrieved,
the planner selects a flaw, then resolves it. Flaw reso-
lution will often force propagation of variable changes
i~ the constraint network that result in updates to the
Flawcache. Subsequent queries to the FlawQuery will
return a new set of flaws that accounts for these updates
and the flaws filtered by the PIF.

To see this process in action, let us consider a few
steps of planning given the partial plan and PIF that
we have described. This process is shown in Figure
6. Let us assume that choose selects flaws according
to some arbitrary order. Also suppose that resolve is
the strategy for resolving a flaw. After deciding that
pointAt(D = d) should be part of the plan, the cor-
responding configuration rule ensures the creation of a
turnTo(E) interval. This flaw is handled next, result-
ing in the creation at step 3 of an i d l e 0 flaw. The
FlawQuery, however, indicates that the set of filtered
flaws at step 3 omits this flaw. This is because the PIF
for the Scienceplanner includes the condition that inter-
vals with predicate i d l e don’t pass. At the next step,
choose() returns flaw Aand planning proceeds. By con-
trast, the PIF for the Deliberative Planner would return
i d l e as one of the flaws at step 3.

EUROPA’s PiF framework suppons the following
conditions, among others:
0 Interval predicate filtering - filters all intervals of a

particular predicate.
0 intervai variable filtering - filters selected variable of

all intervals with a particular predicate.
0 Temporal filtering - filters intervals according to a

variety of temporal specifications. One example is a
filter for intervals guaranteed not to happen within a
temporal extent (a horizon filter).

Complexity Analysis
In the simplest PIF implementation, one could omit the
Flawcache and Connection infrastructure. Resolving a

* query would be accomplished by iterating over all inter-
vals and variables in the plan database and for each, ap-
plying the filter to test for inclusion or exclusion. This
would result in a worst-case time-complexity given by
(N, + N,) * N, * C, where N, is the number of vari-
ables, N, is the number of intervals, N, is the number
of conditions in the filter, and C, is the average cost of
evaluating a condition.

Since the points of greatest cost are in the evalua-
tion of conditions, we seek to reduce the execution of
condition tests. This is accomplished in a numnber of
ways: 1. The last set of filtered flaws are cached in
each FlawQuery; 2. The current set of flaws in the
plan database are cached in the Flawcache; 3. Each
cache is maintained through notifications of changes; 4.
Conditions may be ordered to fail fast, based on the
characteristcs of each problem; 5. The FlawQuery is
updated only when the planner requests the latest set
of flaws. Thus, the queries are only run on the set of
flaws that were added since the last query.

The resulting worst-case cost of a query is approx-
imated by: N+ * N, * C, where N+ is the number of
flaws inserted into the flaw cache since the last query.2
The approximatiofi omits the cost of c~c.chin= events
during synchronization of the Flawcache and $e Plan-
Database. This is reasonable since the costs of caching
are much less than the cost of evaluating the conditions
over all insertions. Notice that we do not need to worry
about flaws that are removed from the cache, since they
aren’t returned to the planner in any case.

Related Work
Many integrated planning and plan execution frame-
works define a fixed boundary between their compo-
nents. These systems also use different modeling lan-
guages, in some cases with different semantics, and thus
have potential problems with model synchronization.
Finally, these systems do not have a crisp declarative
characterization of the boundary between the compo-
nents. This mems that redistribution of the duties
of a component is either impossible or requires ex-
pensive model revision. Examples of integrated plan-
ning and plan execution systems in this category are
O-Plan (TDK94), Cypress (WMLW95) 3T (BFGf97),
Propice-Plan (DI99) and the Remote Agent (MNP+98;
JMMfOO).

IDEA (MDF+02; DLM03) is an agent architecture
designed to overcome shortcomings in the Remote
Agent approach to agenr; modeling. IDEA provides a
simple virtual machine that supports plan execution,
consisting of a model, plan database, plan runner, and
reactive planner. The job of the reactive planner com-
ponent of an IDEA agent is to ensure that a “locally
executable” plan is returned to the plan runner. Thus,

‘In practice only some of the conditions will be executed

2N+ << (Ni + N,) since there are relatively few flaw
since we discard the flaw after the first condition fails.

insertions resulting from each planner commitment.

a crucial task is to define the scope of the reactive plan-
ner’s job. The PIF is a natural way to focus on those
parts of the model that must be addressed by each
IDEA agent. IDEA also supports the notion of multi-
ple planners operating on the same plan database, and
thus the same model. In particular, the plan runner can
be thought of as an Executive, while a reactive planner
can perform almost any task. PIFs are a natural way
to define the scope of these various planners in order to
ensure that planners do not step on each others’ toes.

Discussion and Future Work
This framework presents a means by which a single
model can be used and shared among all of the agents.
It enables an adjustable definition of the amount of
work each agent will perform without revising the
declarative model of the planning domain. Having an
easy and low-overhead way to adjust the scope of work
of each agent simplifies the design of multi-agent sys-
tems and reduces development and validation cost.

The notion of PIFs is lacking in some formality. EU-
ROPA’s implementation of PIFs , for example, depends
on details of the plan structure to distinguish between
different categories of flaws. For example, flaws are dis-
tinguished by the predicate of intervals, and by vari-
able type (e g temporal variables). In part, this is a
manifestation of the fact that we have skimmed over
the relationship between flaws and rules. This crucially
depends on the exact details of the plan structure. We
have purposefully given this issue a brief treatment, but
more formality is needed.

The notion of PIFs leaves aside any consideration
of how to coordinate among the agents responsible for
finding plans. In particular, a more careful examination
of the handoff strategies agents can employ given a set
of PIFs is worthwhile.

References
R. Bonasso, R. Firby, E. Gat, D. Kortenkamp,
D. Miller, and M. Slack. Experienences with an ar-
chitecture for intelligent, reactive agents. Journal of
Experimental and Theoretical Artificial Ingelligence,
9(2), 1997.
0. Despouys and F. ingrand. Propice-pian: Towards a
unified framework for planning and execution. In Pro-
ceedings of the 5th European Conference on Planning,
1999.
M. Dias, S. Lemai, and N. Muscettola. A real-time
rover executive based on model-based reactive plan-
ning. In Proceedings of the International Conference
o n Robotics and Automation, 2003.
R. Dechter, I. Meiri, and J. Pearl. Temporal constraint
networks. Artificial Intelligence, 49:61-94, 1991.
J. Frank and A. J6nsson. Constraint based attribute
and interval planning. Journal of Constraints, To Ap-
pear, 2003.

I

A. Fukunaga, G. Rabideau, S. Chien, and D. Yan. To-
ward an application framework for automated plan-
ning and scheduling. In Proceediiiys of the 15". In-
ternational Joint Conference o n Artificial Intelligence,
1997.
M. Ghallab and H. Laurelle. Representation and con-
trol in ixtet, a temporal planner. In Proceedings of
the 4th International Conference on AI Planning and
Schedtlling, pages 61-677, 1994.
A. J6nsson, P. Morris, N. Muscettola, K. Rajan, and
B. Smith. Planning in interplanetary space: Theory
and practice. In Proceedings of the Fifth Interna-
tional Conference on Artificial Intelligence Planning
and Scheduling, 2000.
P. Laborie and M. Ghallab. Planning with sharable
resource constraints. In Proceedings of the 14th In-
ternational Joint Conference o n Artificial Intelligence,
1995.
N. Muscettola, G. Dorais, C. Fry, R. Levinson, and
C. Plaunt. Idea: Planning at the core of autonomous
reactive agents. In Proceedings of the 3 d International
N A S A Workshop Planning and Scheduling for Space,
2002.
N. Muscettola and P. Morris. Execution of tempo-
ral plans with uncertainty. In Proceedings of the 17th
National Conference on Artificial Intelligence, 2001.
P. Morris, N. Muscettola, and I. Tsamardinos. Re-
formulating temporal plans for efficient execution. In
Proceedings of the 15th National Conference o n Arti-
ficial Intelligence, 1998.
N. Muscettola, P. Morris, and T . Vidal. Dynamic con-
trol of plans with temporal uncertainty. In Proceedings
of the 17th International Joint Conference o n Artifi-
cial Intelligence, 2001.
N. Muscettola, P. Nayak, B. Pell, , and B. Williams.
Remote agent: To boldly go where no ai system has
gone before. Artijkial Intelligence, 103(1-2) , 1998.
A. Tate, B. Drabble, and R. Kirby. 0-plan2: An open
architecture for command, planning and control. In-
telligent Scheduling, 1994.
D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P.
Wesley. Planning and reacting in uncertain and dy-
namic environments. Journal of Experimental and
Theoretical Artificial Ingelligence, 7(1), 1995.

